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1. GENERAL INTRODUCTION 

An investigation of the dynamic interactions between DNA and two specific metals 

(uranium and holmium) is the first research topic of the thesis so the basic information 

regarding metal-DNA interactions is presented first. 

DNA-metal interaction 

Metal-DNA interaction is a research area that is attracting the interest of more and 

more scientists, due to many practical motivations, such as pharmaceutical applications [1-

10], toxicity concerns [7, 11-13], DNA probe design [1, 14] and DNA purification [15, 16]. 

As we know, the four bases of DNA are adenine (A), guanine (G), cytosine (C), and 

thymine (T). Their structures and labeling are in Fig 1. 

Coordination, intercalation and hydrogen bonding are the three fundamental DNA-

metal interactions. Most coordination interactions between DNA and metals involve soft 

metal ions and nucleophilic positions on the DNA bases. The structure of cis- (NH3)2Pt-

dGpG is a classical example: its platinum center coordinates to the N7 position of the 

guanine bases [5]. Other nucleophilic sites on DNA suitable for soft metals include the N7 

position of adenine, the N3 position on cytosine, and the deprotonated N3 position on 

thymine [7]. Hard transition-metal ions are capable of coordinating to the phosphate oxygen 

atoms [17]. In some rare cases, the sugar ring, which is a poor ligand, is involved in the 

coordination [18-20]. Besides direct coordination, non-covalent metal-DNA interactions are 

also important, such as intercalation and hydrogen bonding [21-23]. In the intercalation 

mode, metal ions or complexes are slotted into the double planar layers of ligands, just like 

the meat in the middle of a sandwich. It is not surprised that the ligands of the metal 
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complexes can form hydrogen bonds with polynucleotides, especially with the phosphate 

oxygen. A mix of covalent and non-covalent bonding is possible. 

There are two fundamental categories of reactions between transition metal 

complexes and DNA: ( 1) redox reaction; (2) hydrolytic reaction. 

The Fenton reaction is the simplest and most classic example of the redox reactions. 

In the Fenton reaction, the metal doesn't directly attack polynucleotides but it helps to 

generate OH radicals, which will attack and cleave the DNA chains. A Fenton reaction 

involving Fe3+ ions is: 

Fe(II) + H202 -----> Fe(III) + OH" +Off 

Fe(III) + e· ----> Fe(II) 

Fenton reactions can be site-nonspecific and also can be designed to be site-specific. 

Dervan and coworkers made the first demonstration of site-specific Fenton reactions [24]. 

Like Fenton reactions, other redox reactions use the oxidative material produced in some 

early step of reactions to cleave DNA chains. Both the sugar and base can be the target of 

reactions. 

Hydrolysis of nucleic acids mediated by metal ions is important in natural enzymatic 

reactions [7]. If a metal ion can function like a Lewis acid, then it is potentially effective in 

promoting hydrolysis of the phosphodiester by polarizing the phosphorus-oxygen bond. 

The metal-DNA interactions have been applied to spectroscopic probes, 

metallofootprinting reagents, conformational probes, and anti-cancer drugs. The tris 

(phenanthroline) ruthenium (II) complexes offer a novel spectroscopic probe of nucleic acids, 

since the intensity and frequency of luminescence are increased upon intercalation into the 
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double helix. As a result the complexes provide a simple luminescent stain for DNA in 

fluorescent microscopy experiments [7]. 

Utilization of metal complexes for chemical footprinting is a very important 

application in biology. Initially biologists developed the footprinting technique as a means of 

locating protein-binding sites on DNA [25]. The basic idea of this technique is that once a 

position on the DNA helix is attached by metalloproteins, then bonded spot is unavailable for 

redox cleavage. The comparison of protein-bonded mapping of DNA and nonprotein:-bonded 

mapping tells the protein-binding sites on DNA. A simple footprinting reagent of great utility 

is Fe(EDTA)2° [26]. Since this dianion is unlikely to bind with the DNA polyanion, the 

hydroxyl radicals produced via Fenton reaction at a distance from the DNA helix would 

likely diffuse and distribute along the helix evenly. So the result is a completely sequence-

neutral pattern of cleavage. The very small hydroxyl radicals can even diffuse within the 

DNA-binding protein to delineate binding domain and consequently the footprinting 

resolution is extremely high. Other footprinting reagents in use include Cu(phen)2 and 

manganese porphyrins [27-29]. 

X-ray crystallography is the critical method of finding conformation information 

about the DNA double helix. Yet many conformations have still not been described to high 

resolution, and only a few oligonucleotides have been crystallized. Other techniques are 

therefore required to bridge the small set of oligonucleotide crystal structures that point to 

plausible structures and the large array of structures that arise as a function of sequence on 

long helical polymers [7]. Metal complexes can be used as both nonspecific conformation 

probes and shape-selective probes. OsO4 can react across the 5,6 position of accessible 

pyrimindines to form cis-osmate esters [7]. Hence DNA containing unusual local 
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conformations with prominent solvent-accessible pyriminides can be probed with OsO4. The 

junction regions of Z-DNA, the single-stranded loops in cruciform structures, and a segment 

of the dangling third strand in H-DNA have all been probed by means of the differential 

reactivity of osmium tetroxide with DNA sites dependent upon their accessibility [7]. 

Metal complexes have been explored as anticancer drugs, and it has been known 

that DNA is the direct target of metal complexes for its anti-tumor effectiveness [1-6]. 

Interestingly, the anti-tumor function of metal complexes is due to the toxicity of those heavy 

metals. Amazingly, metal complexes of proper dose are more toxic to DNA in tumor cells 

than to those in normal cells, and that is why the metal complexes are effective in killing 

tumors. Platinum, gold, ruthenium, rhodium and other transition metal compounds have been 

developed for this use [ 1-6]. The main considerations in designing this kind of medicine are 

to make it absorbed easily by cells with less side effects ( e.g. kidney toxicity and 

neurotoxicity). 

Size exclusion chromatography 

Size exclusion chromatography (SEC) is also called gel permeation chromatography 

(GPC). In SEC solutes are separated as a result of their permeation into solvent-filled pores 

by virtue of their physical size. Smaller molecules permeate more deeply the pores. As a 

general rule, bigger molecules elute out earlier than smaller molecules. By far SEC is one of 

the most popular and convenient methods of determining the average molecular weight and 

the molecular weight distribution of a polymer [30]. Although DNA fragments are usually 

separated by gel electrophoresis, size exclusion provides an alternative method, which is 

reproducible and straightforward to interface to ICP-MS. 
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Size exclusion was first noted in the late 1950s when separation of proteins on 

column packed with swollen maize starch was observed [31-33]. The run time was typically 

48 hours. Recently SEC has been developed on three lines. The first line of development 

addressed the need for media of different separation ranges since the separation range solely 

depends on the pore size distribution of the media. The second line of development was to 

decrease the particle size, which is the key factor in decreasing separation time. The third line 

was to make the pore size distribution more uniform, which can dramatically increase the 

selectivity and resolution. 

In SEC, the first consideration in selecting the mobile phase is the solubility and 

compatibility between the mobile phase and solutes, though secondary effects, such as ionic 

and hydrophobic effects, may exist. The SEC eluent can be organic free, and it can be 

prepared as a buffer around pH 7. These features of SEC along with the ease of correlating 

retention time to molecular weight make SEC effective for separating bio-molecules even 

though the resolution of SEC is usually not great. One way to improve the resolution of SEC 

is to combine several columns in line but the elution time increases as compensation. 

Next, the technique and instrument used for detecting metals in my experiments are 

described. 

Introduction to inductively coupled plasma mass spectrometry {ICP-MS) 

ICP-MS is the art of combination, which was initially made by R. S. Houk at the 

Ames Laboratory. 

The inductively coupled plasma is an electrodeless discharge at atmospheric pressure, 

supported by a radio frequency generator. Argon is the most commonly used gas, although 

others are occasionally used [34-37]. Basically there are three gas flows going through the 
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torch, and they are the outer gas flow (10 -15 L/min), intermediate flow ( ~ 1 L/min) and 

aerosol gas flow(~ 1 L/min). The extreme heat in the plasma (temp. higher than 5000 K) 

gets the introduced sample aerosol vaporized, atomized, excited and ionized. Then the ions 

that are mostly singly charged are extracted through the sampler and skimmer cones into the 

mass spectrometer. 

Various mass spectrometers can be combined with the ICP. The quadruple analyzer is 

rugged and cheap but has relatively low mass resolution [38]. The electrostatic analyzer is 

commonly used as the energy selector while the magnetic sector mass analyzer is used as the 

mass selector [39-42]. The marriage of magnetic sector and electrostatic analyzer allows high 

resolution MS. 

ICP-MS has many valuable features which include very low detection limits (ppt to 

ppq level for most elements), fast data acquisition, large linear dynamic range, simple, easily 

interpreted spectra, and the ability to couple with other sample introduction options, such as 

laser ablation, liquid chromatography. The features ofICP-MS itself and its further 

combination accounts for its popularity. ICP-MS has not only been used for trace and ultra-

trace elemental analysis but also has been involved in biomedical research, food nutrition, 

geochemistry, environmental sciences, pharmaceutical quality control, semiconductor 

industry, clinical toxicology, forensic science, etc. [ 43-62]. 

Just ten years ago, some problems with ICP-MS, such as mass bias, matrix effects, 

polyatomic interference, and loss of ions during transportation from sampling still limited its 

use [63-65]. But now these problems have been solved or alleviated to some extent, due to 

modern automation, electronics and enriched knowledge in chemistry. ICP-MS is a very 

mature technique now. 
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Magnetic sector ICP-MS 

The sector ICP-MS usually promises high mass resolution due to the double focusing 

by the magnetic sector and electrostaic analyzer. The Finnigan MAT Element is a 

commercialized sector ICP-MS instrument. Its mass analyzer is ofreversed Nier-Johnson 

geometry, which means a 60° magnetic sector precedes a 90° electrostatic analyzer. As 

claimed by the manufacturer, the specifications of Element 2 are in shown in Table 1. 

Table 1. Element 2 specifications 

Sensitivity ( concentric nebulizer) 1x10 9 cps/ppm In 

Detection Power < 1 ppq for non-interfered nuclides 

Dark Noise < 0.2 counts I seconds [cps] 

Dynamic Range > 10 9 linear with automatic gain calibration 

Mass Resolution 300, 4000, 10000 (10 % valley), DS controlled 

Signal Stability better 1 % over 10 minutes 

Signal Stability better 2 % over 1 hour 

Scan Speed (magnetic) rn/z 23->240->23 in less than 355 sec 

Scan Speed (electric) 1 ms/jump, independent of mass range 

The second project of my research is to develop the quantification method for 

phosphorous in proteins. Some historical facts and basic knowledge about phosphoprotein 

are introduced here. 
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Phosphoproteins 

The first phosphoproteins to be discovered as early as in the 19th century were milk 

proteins of the casein family and the egg yolk protein phosvitin. For almost a century casein, 

phosvitin and some related milk and egg yolk proteins were the main phosphoproteins 

known. Consequently, protein phosphorylation was mainly regarded as a gross metabolic 

reaction. It was not until 1955, by Fischer and Krebs [66] and Sutherland and Wosilait [67], 

that the regulatory role of protein phosphorylation was shown. 

Protein phosphorylation is a reversible process. It is catalyzed by protein kinase and 

reversed by protein phosphases. In the early 1980s, when great number of protein kinases 

were found, protein phosphorylation became recognized as the major general mechanism by 

which intracellular events in mammalian tissues are controlled by external physiological 

stimuli [68]. In bacteria, protein phosphorylation has been found to be targeted to Ser, Thr, 

Tyr, His, Arg, Lys, Asp, Glu, and Cys residues [69]. 

It is becoming apparent now that protein phosphorylation/dephsophorylation provides 

a major binary code for signal processing (i.e. decoding and interpretation) in cells. This 

mechanism, together with other chemical interactions, builds a tight communicative network 

between innumerable protein molecules. Such a network which in many aspects resembles a 

neuronal network, shows an amazingly high degree ofredundancy, cross-talk and feed-back 

control of the signaling pathways which is a prerequisite for its plasticity, i.e. its ability to 

adapt and to learn [70]. 

Thesis organization 

This thesis consists of four chapters: 1) the general introduction 2) a paper prepared 

for scientific journal 3) another paper prepared for scientific journal 4) the general 
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conclusion. Chapter 2 and 3 have their own abstracts, introductions, conclusions, 

acknowledgements and references. 
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2. MEASUREMENT OF KINETICS OF BINDING BETWEEN URANIUM OR 

HOLMIUM AND DNA BY SIZE EXCLUSION CHROMATOGRAPHY INDUCTIVELY 

COUPLED PLASMA MASS SPECTROMETRY 

A paper to be submitted to Bioinorganic Chemistry 

Yongjin Hou and R. S. Houk 

ABSTRACT 

To make a dynamic investigation on the interactions between DNA and 

uranium/holmium, we spiked metals at low ppb level into solutions of 5ppm DNA. The 

experiments were performed near physiological conditions, so the activeness and attributes of 

DNA were maintained, and the best imitation of what could happen between DNA and 

uranium/holmium in natural surroundings was obtained. Inductively coupled plasma mass 

spectrometry (ICP-MS) made it possible to determine the metals at ultra-trace level. Size 

exclusion chromatography (SEC) column was employed to separate DNA fragments. We not 

only determined the sizes of DNA fragments that could bond to uranium/holmium under our 

experiment conditions but also measured the amount of metals bound to DNA fragment verse 

time. By this way, a dynamic view of DNA-uranium/holmium interactions was obtained, 

which provided information concerning the rate and equilibrium of interactions. Essentially, 

an accurate and reliable calibration to determine the size of unknown DNA fragments was 

required. A calibration done with DNA markers was compared with one done with protein 

markers. It turned out it was more accurate and reliable to use DNA markers to calibrate 

unknown DNA fragments. 
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INTRODUCTION 

Metal-DNA interaction is a burgeoning field of research due to many practical 

motivations. Among them, there are pharmaceutical applications [ 1-1 OJ, toxicity concerns (7, 

11, 12, 13], DNA probe design[7, 14] and DNA purification[15, 16]. Going over the previous 

research on metal-DNA interactions, we noticed that main group metals (including Na, K 

Mg, Ca, Sn etc.) and transition group metals (including Fe, Co, Ni, Zn, Cd, Hg, Cu, Ag, Au, 

Os, Ru, Rh, V, Mn, Pt, Pb etc.) have received much more attention than the actinide 

elements. Previous research mostly reported the existence or specification of interaction. 

Records on kinetic attributes of interactions ( e.g. the rate of interaction and equilibrium of 

interaction) are rarely seen. 

The occurrence of actinide elements is ubiquitous and they are well known as 

environmental hazards. Uranium is the most abundant actinide element in nature and it is the 

one used most commonly in industry. As reported, uranium occurs naturally at an average of 

3µg/L in seawater, and continental surface waters contain 0.1 to 500 µg/L U (18]. Mining, 

nuclear waste disposal and tank-armor of depleted uranium [19] expose certain groups of 

people to surroundings of even higher level of this element. Uranium is a general cellular 

poison and can potentially affect organs and tissues when it is accumulated to certain amount 

in biological media. The hazards associated with uranium exposure include both chemical 

toxicity and radioactivity. Due to long half lives of uranium isotopes {238U: 4.49 x 109 yrs, 

235U: 7.10 x 108 yrs, 2340: 2.48 x 105 yrs), radiobiological damage from U is of chronic effect, 

compared with its chemical hazard [19]. A soft a-particle emitter, uranium is more 

dangerous as an internal radiological hazard than as an external hazard. Uranium can enter 

the human body by the oral route (in food and water), by inhalation, and through the skin and 
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mucous membranes [17]. Finally, it deposits in human organs, for example, lung, liver and 

bone [17]. 

Like the information above, most previous documents concerning hazards 

associated with uranium include cells, tissues or organs, i.e. mostly systems much larger than 

individual molecules. To understand the underlying reasons of the chemical toxicity of 

uranium, it is important to know how uranium affects DNA, the genetic pathway. A few 

papers concern the uranium-DNA interactions [20-23]. Those research, however, focused on 

how to use uranyl (VI) as a DNA- probe and they were mainly done with acidic condition, 

ultraviolet irradiation, and most soluble species of uranium compounds. In our opinion, the 

uranium-DNA interaction under this kind of experimental conditions may not represent the 

real case in nature. 

The actinide elements after uranium hardly occur in nature but it doesn't mean they 

don't exist around us or their effects on biological systems can be ignored. Plutonium is used 

in nuclear weapons and power reactors and its side products, such as americium and curium 

cause many of the long-term radiological and thermal problems associated with reactor waste 

storage and disposal [24]. Believe it or not, in the USA, an expanding use of americium is in 

smoke-detector alarms [24]. These post-uranium elements are radioactive hazards while 

documents regarding their chemical effects on biological systems are barely seen. Neptunium 

and plutonium, the two elements right after uranium, are similar to uranium chemically [25]. 

Afterwards, starting from americium, the following actinide elements have characteristic 

valence of+ 3 in aqueous solutions as lanthanide elements do, and they chemically resemble 

lanthanide elements [25]. So it is possible that the chemical effects of lanthanide elements on 

biological systems resemble those of americium, curium, berkelium and so on. 
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In our present work, uranium was chosen due to its importance in industry and 

widespread occurrence. Holmium, which has only one isotope (165Ho) was picked due to the 

chemical similarity between lanthanide elements and post-uranium actinides elements and 

due to the low natural abundance of holmium. SEC and ICP-MS were put in line. The trace 

amount of metals used in our work was designed to be representative of the low 

concentrations of these metals in environment. The interaction between DNA and uranium or 

holmium happened in tris-HCl buffer at pH 7.3, which is close to the real physiological 

condition. Molecule separations in SEC columns were done with the same buffer. The 

magnetic sector ICP-MS promised us extremely low detection limit and online 

chromatography. By integrating the chromatography peak areas ofU, Ho detected by ICP-

MS, we could determine the amount of metals bound to DNA fragments. With a series of 

measurements done over time, the dynamic plots for DNA's interactions with U and Ho were 

respectively obtained. By making a SEC calibration curve, the retention time and molecular 

weight of eluted peaks could be determined. 

In short, our work attempted to mimic the real situation that may occur between 

DNA molecules and U/Ho. We hope that our work can enlarge the knowledge about metal-

DNA interactions to actinide metals and can be an early exploration to kinetics aspect of 

metal-DNA interactions. Our work may also be helpful to understand how U and Ho affect 

the health of biological systems at the molecular level. 

EXPERIMENTAL 
Instrumentation 

Fig 1 describes the overall instrument setup. The instrumentation details including 

component models and operating conditions are listed in Table 1. Several things need to be 
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Table 1. Component models and operating conditions 

Component 

HPLCpump 

(Acuflow Series III pump) 

UV-VIS absorbance detector 

(Rainin Dymax) 

SEC column 

(Tosohaas G 3000 SWXL, Dims. 7.8 mm x 

30 cm, particle size 5µ, pore size 250 A) 

Guard column 

(Tosohaas Dims. 6 mm x 4 cm) 

Injection valves (pre and post columns) 

(Rheodyne Metal Free 9725 i with 20 µl loop) 

Nebulizer 

(PFA 100) 

ICP-MS 

(Finnigan Element) 

Condensor 

Operating Conditions 

0.5 ml/min 

260 nm or 280 nm 

mobile phase 

0.05 M tris-HCl, pH 7.3, 0.05 % NaN3 

natural uptake rate: 100 µI/min 

but pumped at flow rate of 0.5 ml/min 

low resolution: nominally, 300 

RF power: 1200 kW 

outer argon flow: 15 L/min 

auxiliary: typically 0.65 Umin 

aerosol flow rate: typically 0.95 Umin 

2°c 
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pointed out. First, we skipped the heater, which usually precedes the condenser since the 

heater could worse the signal stability while improving the sensitivity. Second, low 

resolution (nominally, m/L'.\m=300) was usually used because there are no polyatomic 

interferences for 238U+ and 165 Ho+_ Just in one experiment of detecting 31 P+ and 2380+ 

simultaneously, medium resolution was chosen. Third, to gain the best balance between 

signal sensitivity and signal stability, the aerosol flow rate and the auxiliary flow rate were 

tuned each time when the instrument was used. The values in Table 1 are just the typical 

ones. 

Reagents and solutions 

The stock solutions of uranium and holmium were from SPEX. The HPLC buffer was 

0.05 M tris-HCl plus 0.05% NaN3, pH 7.3. The buffer was also used to dilute DNA, uranium 

and holmium solutions. DNA Molecule Marker V from Boehringer Mannheim, consisted of 

22 fragments ranging from 8 bp to 587 bp. Instead of being used as the marker, it was diluted 

in buffer and then either uranium or holmium solution was spiked into the diluted DNA. 

Finally, the mixture dissolved in buffer was 5 ppm Marker V plus 1 ppb uranium or 5 ppm 

Marker V plus 0.5 ppb holmium. The protein markers from Sigma included carbonic 

anhydrase, bovine erythrocytes (29 K), albumin, bovine serum ( 66K), alcohol 

dehydrogenase, yeast ( 150 K), ~-Amylase, sweet Potato (200 K) and thyroglobulin, bovine 

(669 K). The short, single-stranded DNA chains made by the DNA facility ofISU were 

annealed into DNA fragments of 5 bp, 20 bp and 50 bp separately. Using enzyme restriction 

cleavage of plasmid DNA, we obtained DNA fragments of 194 bp, 412 bp and 695 bp. The 

above six, separated DNA fragments of known size were then used as our DNA markers. 
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Measurements 

Since the loop volume of both injection valves was 20 µland we always used full-

injection mode, which means injection volume is as least three times of the loop volume, 

theoretically 20 µl did go through the injector without dilution each time. Either UV 

absorbance or ICP-MS was chosen exclusively as the detection method. 

UV Detector 

The protein weight markers (29 K, 66K, 150 K, 200 K, 669 K) were individually 

dissolved in buffer at roughly 1000 ppm. Then they were injected into the pre-column 

injection valve one by one. Meanwhile, UV absorbance was collected by a computer running 

with a homemade LABVIEW program at acquiring rate of 1 point/second. The UV 

wavelength was set to 280 nm. To ensure the chromatography of each injection was not 

interfered by that of the previous injection, a new injection was always performed 30 minutes 

after the previous one. The above part was the protein calibration, from which Fig 2 and 

curve A of Fig 3 were generated. 

Similarly, we injected the DNA markers (5 bp, 20 bp, 50 bp, 194 bp, 412 bp, 695 bp) 

into the SEC column and obtained the DNA calibration (Fig 4 and curve B of Fig 3). The 

detector wavelength was 260 nm. The approximate concentration of 5 bp, 20 bp and 50 bp 

was 1000 ppm each. It was roughly 100 ppm each for 194 bp, 412 bp and 695 bp. 

ICP-MS 

With our method file for 238U+, it took about 1.4 seconds to get one chromatography 

point while for 165Ho +, it took about 1.2 seconds. As mentioned earlier, the uranium mixture 

was 5 ppm DNA spiked with 1 ppb uranium. Thirty minutes after the above mixture was 

prepared, the mixture was first injected and the data acquisition was started for 238U+ with our 
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ICP-MS. About 20 minutes later, the signal of 238U+ started rising. It turned out there was one 

small but significant peaked centered at 1320 seconds. The data acquisition was not stopped 

until the whole chromatography was complete, which took 30 minutes. Shortly, a uranium 

standard of 1.0 ppb was injected into post-column injection valve three times, each injection 

being separated by 20 seconds. So by comparing the area of chromatography peak from the 

mixture with that from uranium standard, we could quantify how much uranium was 

contained in the eluted fractions from the mixture. More injections were made after 1.5 

hours, 2.5 hours, 4.5 hours, 6.5 hours, 8.5 hours, 26.5 hours and 47 hours. The uranium 

standard was injected post column after each injection. Besides the spiked DNA, 5 ppm pure 

DNA marker V was injected. 

The mixture of 5 ppm DNA plus 0.5 ppb Ho was basically treated the same way. The 

difference was the time interval. For holmium, injections were made after 10 minutes, 30 

minutes, 1 hour, 2 hours and 4 hours. It must be pointed out that the 10-minute injection was 

made after all the other injections and was with a different batch of mixture of the same 

composition. 

RESULTS AND DISCUSSION 

Comparison of protein calibration and DNA calibration 

Fig 2 is the chromatogram for protein weight markers and Fig 3 is the one for DNA 

markers. In both plots, some curves were shifted up for clarification but all curves actually 

had baseline around zero absorbance. It should be noticed that the size of proteins usually is 

expressed in the term of molecular weight (MW) while the size of DNAs is expressed in the 

term of base pair (hp). To make them comparable, in Fig 3 that combined the calibration 
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curves of both DNAs and proteins, we converted the bp of DNAs into MW, based on the 

knowledge that one bp of Na +B-DNA weighs an average of 660 Da [26]. Fig 3 showes that 

DNA fragments elute much faster than proteins of same MW. It is consitant with expectation 

that DNA is more open and occupies more larger volume than protein of same MW. The 

sharp contrast in Fig 3 meant we couldn't trust protein weight markers for calculating the 

size of unknown DNA fragments even though protein markers of single size are 

commercially easier to get. 

Uranium bound to DNA 

Curve A of Fig 5A shows the chromatogram from the first injection from the 

uranium-DNA mixture. Curve Bis the chromatogram of the same mixture after 4.5 hours 

based on the preparation time. They were similar at peak positions. Both peaks ranged from 

1220 seconds to 1500 seconds, centered around 1320 seconds. They were different at the 

peak sizes. The 30-minute injection gave a smaller peak of 238U+ compared with the 4.5-hour 

injection. All the other uranium injections (1.5 hours, 2.5 hours, 4.5 hours, 6.5 hours, 8.5 

hours, 26.5 hours, 47 hours) also generated chromatography peaks at the same position. 

According to our DNA calibration, those are DNA fragments of 14 bp, 11 bp and 6 bp. One 

pure DNA mixture without being spiked with uranium was injected into column and gave us 

the Curve C, from which uranium was hardly seen. 

By using the post-column injections, we quantified the uranium bound to DNA. The 

results were plotted in Fig 5B. The data at O hour was taken from the measurement of 5 ppm 

pure DNA. The amount of bound uranium reached its maximum, which was about 77 ppt at 

4.5 hours. After that, the curve went down and reached its steady state at about 44 ppt. The 

peak on the plot was reproducible in three independennrials though the reason was 
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unknown. Keep it in mind that 1 ppb uranium had been spiked into 5 ppm DNA. So at the 

maximum, the bonding ratio was 77 ppt/1.0 ppb = 7.7% and at the equilibrium the bonding 

ratio was 44 ppt/1.0 ppb = 4.4 %. These results indicates that most of the uranium doesn't 

bind to DNA. 

Holmium bound to DNA 

Curve B, Fig 6A depicts 165Ho + in the spiked DNA. Curve A is the chromatogram 

from 5 ppm DNA, which contained Holmium at about 6 ppt. The chromatography peak 

ranged from 1250 seconds to 1600 seconds, centered around 1380 seconds. According to our 

calibration, 1250 seconds corresponded to a DNA fragment of 13 bp, 1380 seconds to 9 bp 

and 1600 seconds to 4 bp. The amount of holmium that could be detected in our DI water and 

buffer was less than 1 ppt. So the non-spiked DNA must get its holmium somewhere during 

transportation or storage. All other holmium-related injections had a single chromatography 

peak centered at 1380 seconds. Fig 6B, plots the amount of holmium bound to DNA verse 

time for all these injections. Apparently, the slope of the curve started sharp. The 10-minute 

injection almost made the maximum. After that, the curve levels off and the equilibrium 

amount of Holmium bound to DNA is about 0.22 ppb. The spiked sample contained 5 ppm 

DNA plus 0.5 ppb holmium so the bonding ratio at equilibrium was 0.23 ppb / 0.5 ppb = 

46%. 

Ion exchange in the column 

We injected 0.5 ppb solution of free uranium and holmium buffered at pH 7.3 but 

couldn't see uranium or holmium elute through the column in several hours. On one hand, 

this could be regarded as another evidence that the chromatography peaks were from 

uranium or holmium bound to DNA rather than from free metals. However, it also meant that 
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the packing material of the SEC column could trap free uranium and holmium. Then 5 ppm 

pure DNA was injected into the column. No DNA fragments of any size were observed to 

pick up the free uranium or holmium trapped in the column. So it meant the binding between 

the column material and the metals was strong and it also meant that trapped uranium or 

holmium didn't appear in subsequent chromatograms. 

Some further investigations of the behavioral of free uraniumn and holmium were 

made. Uranium and holmium at 0.5 ppb in different buffers were injected into the column. 

As shown in Fig 7 A, with the amount of EDT A increasing and pH value decreasing, higher 

and higher percentage of free uranium and holmium was observed to flow out the column. 

The height of bars in first three cases was exaggerated a little bit so as to be shown and the 

real recovery ratios were zero for all of them. Fig 7B showed the chromatography of free 

uranium and holmium. It seemed free uranium was more reluctant than holmium to leave the 

column and holmium was in larger complex than uranium. 

Effect of metal on retention time 

Does the metal bound to DNA fragments change the retention time of DNA? In this 

experiment, 1.0 ppb uranium was spiked into about 50 ppm DNA fragment, all of which 

were 5 bp. After 24 hours, ICP-MS was employed to measure 238U+ (medium resolution: 

4000) and 31 P+ (medium resolution: 4000) in the metal-DNA complex. As shown in Fig 8A, 

the 238U+ chromatography peak was at 1538 seconds, which was close to 1544 seconds, the 

position of the 31 P+ peak and they both were near the time measured by UV absorbance for 

the pure DNA fragment of 5 hp. It also needs to be mentioned that 100% percent uranium 

was bound to DNA fragment of 5 bp, according to our determination. This is because the 
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small DNA fragments were in large excess. Thus, metal bound to DNA didn't change 

retention time of DNA fragments significantly. 

Small fragments and low bonding ratio 

We found that, only small fragments in our DNA mixture bound to uranium (5-14 bp) 

and holmium ( 4-13 bp ). Uranium at 0.5 ppb was also spiked to DNA fragments of single 

size, 20 bp but no uranium was observed to elute from column along with DNA fragments of 

this size, as shown in Fig 8B. The holmium spiked to DNA fragment of20 bp generated the 

similar results. It meant uranium or holmium couldn't bond to big DNA fragments or the 

bonding was so weak that the metal bound to big fragments could be taken off in the column. 

Since big fragments didn't effectively involved into the binding with uranium and 

holmium, the ability of small fragments' binding with metals and the amount of small 

fragments determined bonding ratios which turned out low, especially for uranium. 

As reported, the predominating species of uranium compounds at pH 7 .3 and normal 

pressure is UO2, which can not be well dissolved in water (18]. As previous research shows, 

the solubility and transportability are determining factors that how much uranium can be 

absorbed by cells [ 17]. It may be also the case at the molecule level so the insolubility of 

uranium compound in our experimental conditions may be responsible for the low bonding 

ratio and speed between uranium and DNA. 

Actually, the very low bonding ratio of uranium should be treated as good news. 

Natural DNA molecules are all much bigger pieces. The weak interaction between uranium 

and large molecules reduces the health risk from uranium exposure. DNA is the genetic 

material so its safety may have even more far-reaching meaning to the safety of the cell, and 

even the safety of the whole biological system. 
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CONCLUSION 

From experiments and data analysis above, the following conclusions were reached: 

1. Small DNA fragments ( < 20 bp ) prefer to bind with uranium and holmium in buffer pH 

7.3. There is no bonding or there is very weak bonding between big DNA fragments and 

uranium/holmium. 

2. Holmium bonding is much more quick and effective than uranium bonding. In buffer, less 

than 8% uranium was observed to bond to DNA while about 46% holmium was observed. 

Holmium bonding curve in our experiment conditions reached its maximum just in 10 

minutes while uranium curve took hours. 

3. To determine the size of DNA more accurately with SEC column, using DNA markers is 

better than using protein markers. 

4. The SEC column allows the surrounding near the physiological condition so that DNA 

fragments can maintain their natural properties and activeness. ICP-MS promises the metal 

detection at ultra-trace level. SEC-ICP-MS makes the dynamic investigation on metal-DNA 

interactions possible. This combination can be used to determine the size of DNA fragments 

that have been bonded, and to quantify the amount of metals that have bonded to DNA 

fragments. This combination may also be useful for dynamic investigation of other bio-

molecules, e.g. proteins. 

5. Metal ions, Mn+ may stick to SEC column. In this case, the elution peaks of free metals 

can not be observed at amicable conditions. 

ACKNOWLEDGEMENTS 

Ames Laboratory is operated for U.S. Department of Energy by Iowa State 

University under Contract No. W-7405-ENG-82. 



www.manaraa.com

27 

RERERENCES 

1. Jin L. and Yang P., Journal of Inorganic Biochemistry, 1997, 68, 79-83. 

2. Gonzalez V. M., Perez J. M. and Alonso C., Journal of Inorganic Biochemistry, 1997, 68, 

283-287. 

3. Alessio E. and Iengo E. et al., Journal of Inorganic Biochemistry, 2000, 79, 173-177. 

4. Gunus F. and Algul 0., Journal of Inorganic Biochemistry, 1997, 68, 71-74. 

5. Suzanne E. Sherman, Dan Gibson, Andrew H.-J. Wang, Stephen J. Lippard, Science, 

1985, 230, 412-417. 

6. Rosenberg B., Vancamp L., Trosko J., Mansour V., Nature, 1969, 222,385. 

7. Bertini I., Gray H.B., Lippard S. J. and Valentine J.S., Bioinorganic Chemistry, 1994, 

chapter 8, 455-503. 

8. Roberts J. J. and Thomson A. J., Progress in Nucleic Acid Research and Molecular 

Biology, 1979, 22, 71-133. 

9. Pinto A. L. and Lippard S. J., Biochimica et Biophysica Acta, 1985, 780, 167-180. 

10. Sherman S. E. and Lippard S. J., Chemical Reviews, 1987, 87, 1153-1181. 

11. Kazimierz S. Kasprzak and Miral Dizdaroglu et al., Carcinogenesis, 1997, 18, 271-277. 

12. Conte, C., Mutti, I., and Marmiroli, N., et. al., Chemosphere, 1998, 37, 14. 

13. Monika Asmuss, Leon H.F. Mullenders, Andre Eker and Andrea Hartwig, 

Carcinogenesis, 2000, 21, 2097-2104. 

14. Peter Leverett, Janice Petherick and Robert S. Vagg., et. al., Journal of coordination 

chemistry, 1999, 49(2), 91-100. 

15. Nandi U.S., Wang J.C. and Davidson N., Biochemistry, 1965, 4, 1687. 



www.manaraa.com

28 

16. Harald Biersack, Sanne Jensen and Ole Westergaard, Methods in Molecular Biology, 

1999, 94, 235-242. 

17. Filov V.A., Bandman A. L. and Lvin B. A., Harmful Chemical Substances, 1993, 1, 

Uranium and Its Compounds, p351-373. 

18. Bums P.C. and Finch R., Reviews in Mineralogy, 1999, 38, 220-253. 

19. G. Bukowski, D. A. Lopez, and F. M. McGehee III: Uranium Battlefields Home & 

Abroad: Depleted Uranium Use by the US Department of Defense; Rural Alliance for 

Military Accountability, Progressive Alliance for Community Empowerment, Citizen 

Alert, (March 1993). 

20. Peter E. Nielsen, Claus Jeppesen and Ole Buchardt, Federation of European Biochemical 

Societies, 1988, 235, 122-124. 

21. Claus Jeppesen and Peter E. Nielsen, Nucleic Acids Research, 1989, 17, 4947-4956. 

22. Peter E. Nielsen, Catharina Hiort and Bengt Norden, et. al., Journal of the American 

Chemical Society, 1992, 114, 4967-4975. 

23. Qinyuan Wu, Xueheng Cheng, Steven A. Hosfstadler and Richard D. Smith, Journal of 

mass spectrometry, 1996, 31, 669-675. 

24. Joseph J. Katz, Glenn T. Seaborg and Lester R. Morss, The Chemistry of Actinide 

Elements, Second Edition, Volume 2, 1986, p887. 

25. F. Albert Cotton and Geoffrey Wilkinson, Advanced Inorganic Chemistry, Third Edition, 

1972, p1084. 

26. Donald Voet and Judith G. Voet, Biochemistry, Second edition, 1995, p860. 



www.manaraa.com

Injector Guard 
Column 

HPLC Pump 

To Element ICP-MS 

-+ 

Condenser 

Nebulizer & Chamber 

SEC Column Injector 

UV 
Detector 

Fig 1 Overall instrument setup 

I~ 
• 

To Drain 

Blocked 
by DI Water 

N 
\0 



www.manaraa.com

0.3 

g 0.25 · 
0 
00 

0.2 N .., 
nJ 
B 0.15 -
C: 
nJ 
.0 0.1 · "-
0 
ti) 

_g 0.05 
nJ 
> 0 ::::, 

-0.05 · 200 400 600 800 1000 

RETENTION TIME {s) 

Fig 2 On-ormtography of protein weight mukers 

1200 1400 1 

w 
0 



www.manaraa.com

800 

700 

600 

- 500 co 
C 

400 -
3: 

300 -

200 

A:Protein Calibration 

• 

\ 
100 

.\ ·~ B:DNA Calibralion • \ 

·11 0 -
400 600 800 1000 1200 1400 1600 

Time ( Seconds ) 

Fig 3 Contrast of DNA calibration and protein calibration ( based on 1 bp of DNA weights 660 Da) 

u,.) ...... 

1800 



www.manaraa.com

1.6 

E 1.4 
C 

0 1.2 -
(0 
N 1 .., 
c,:s 

0.8 -
C 

0.6 ... 
0 ti) 0.4 -
.c c,:s > 0.2-
::) 0 

-0.2 -

695 

412 

1941:µ 

&)I:µ ..........,.,_ 
201:µ 
.....,.._...;.. 

5q) 

200 400 600 800 1 CXX) 1200 1400 1600 1800 

Retention lime {s) 

Fig 4 Chrmmtography of DNA mnkers 

vJ 
N 



www.manaraa.com

6000-. 

- 5000 I B 
::::, 

4000 -
w 
I-

3000 
I-

2000 -
0 

VV\ -y~t\A~,A jj I -u 
1000 -

0 -+------.----.-----r-------.-------,-----r-------,-----, 

1000 1100 1200 1300 1400 1500 1600 1700 1800 
RETENTION TIME (S) 

Fig 5A 5 ppm DNA mixture 
A:+ lppb U after 0.5 hr, B: + 1 ppb U after 4.5 hrs, C: DNA alone 

w w 



www.manaraa.com

90 
80 -

I 

-

..... 70 _ I"' a. 
60 • \ a. 

so_ / ::, 

0 40 
Ill 
,_ 30 -
=> ...... 20 -

10 -
0-

0 5 10 15 20 25 30 35 40 45 

TIME ( Hours ) 

Fig 5B Bonding curve of 5 ppm DNA mixture spiked with I ppb U 

50 

vJ 
.i:,.. 



www.manaraa.com

50000 ~--------------------~ 

-
45000 -

40000 

35000 
It) 
co 
-- 30000 w 

25000 -
0:: 
I- 20000 -z ::, 
0 15000 -
(.) 

10000 

5000 -

0 
1000 

B 

1100 1200 1300 1400 1500 1600 
RETENTION TIME (S) 

1700 

Fig 6A A: 5 ppm DNA mixture alone, B: 5 ppm DNA mixture + 1 ppb Ho after IO mins 

1800 

I.,.) 
Vl 



www.manaraa.com

0.25 ---,--------------------------------, 

-.c 0.20 -
C. 
C. -C 0.15 -
z 
:::> 
0 m 0.10 -..... 
0 
:c 0.05 -....., 

0.00 +------------~-~-----~-~------; 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
TIME ( Hours) 

Fig 6B Bonding curve of 5 ppm DNA mixture spiked with 0.5 ppb Ho 

l.>J 
0\ 



www.manaraa.com

1 ·2 1 Case 1: Tris-HCI, pH 7.3, 0.05% NaN 3, metals disovled in buffer 
Case 2: Tris-HCI, pH 6.8, 0.05% NaN 3, metals disovled in buffer 
Case 3: Tris-HCI, pH 6.8, 0.05% NaN3 PLUS 0.05% EDTA, metals dissolved in buffe1 f% 

C: 
E 1 -
::J 
0 u 
u 

0.8 -
E 
0 .... 

It-

0.6 -
n, ...... 
C: 
Q,) 
0 .... 
Q,) a. 0.4 -

Q,) 
> 
0 
0 a.> 0.2 -

0::: 

. - --
Case 4: 1 % EDTA-HCI, pH 4.0, metals dissolved in DI water 
Case 5: 1 % EDTA-HCI, pH 4.0, metals dissolved in buffer 
In every case, solution contained 0.5 ppb Ho and 0.5 ppb U 

0 --+--____c:=::=====----------,---______c:=:=-------___c:=====-------.--1 
1 2 3 

Case 
Fig 7 A Metal Recovery Chart 

4 5 

w 
-i 



www.manaraa.com

18000 

16000 -

14000 --

w 12000 
I-

10000 
I-z 8000 -::, 
0 u 6000 -

4000 -

2000 

0 
1000 1100 1200 

1asHo + 

23au+ 

1300 1400 1500 1600 1700 1800 1900 2000 

RETENTION TIME {s) 
Fig 7B 1 % EDT A-HCI, pH 4.0, 0.5 ppb U and Ho Dissolved in buffer 

w 
00 



www.manaraa.com

180000 -

160000 -
A ....-- 1544 seconds 

140000 

120000 -
w 
I-c2 100000 
I-z 
:::, 
0 
(.) 

80000 

60000 -

40000 -
1538 seconds 

20000 -

0 
1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 

RENTENTION TIME (5) 

Fig 8A Medium resolution, 1 ppb uranium spiked to 50 ppm DNA fragment of 5 bp 
A: signal of 31P\ B: signal of 238U+ 

w 
\0 



www.manaraa.com

20000 -

18000 -

16000 -

+; 14000 
co 
M 
N 12000 -.._.. 
w 

10000 

I- 8000 -z 
:::, 
0 6000 -u 

4000 

2000 -

0 -
0 200 400 600 800 1000 1200 

RETENTION TIME {s) 

Fig 8B 0.5 ppb uranium spiked to 20 bp DNA fragirent 

1400 1600 1800 

0 



www.manaraa.com

41 

3. QUANTIFICATION OF PHOSPHOROUS IN PROTEINS BY INDUCTIVELY 

COUPLED PLASMA MASS SPECTROMETRY USING INORGANIC PHOSPHOROUS 

STANDARDS 

Yongjin Hou and R. S. Houk 

A paper to be submitted to Journal of Analytical Atomic Spectrometry 

ABSTRACT 

Quantification of phosphorous in proteins is very important to research regarding 

protein phosphorylation and dephosphorylation. Current methods, however, can not get this 

work done reliably. The present work showed the possibility of quantifying phosphorus in 

proteins by using inductively coupled plasma mass spectrometry (ICP-MS) with inorganic 

phosphorous standards. The detection limit, reliability and accuracy of our new method were 

evaluated and tested with phosvitin and B-casein. 

INTRODUCTION 

Protein phosphorylation and dephosphorylation play significant regulatory roles in a 

variety of cellular processes such as normal and abnormal cell growth, cell death, and 

secretion. While non-covalent (i.e. allosteric ) regulation of proteins serves mainly a 

homeostatic function, protein phosphorylation is more concerned with switching of cellular 

activity from one state to another. Phosphorylation appears to have two main functions: 1. It 

is the major mechanism by which cells respond to extracellular signals such as hormones and 

growth factors. 2. It is responsible for the timing of events which must occur at defined 

stages in the 
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cell cycle, such as DNA synthesis and mitosis [1]. As a result, detecting changes in the 

phosphorylation status of proteins is becoming increasingly important. 

Present methods, however, can not detect or quantify phosphorous in proteins very 

well. One of present approaches is to artificially incorporate 32PO/ into the cellular ATP 

pool and then measure the densitometry of autoradiographs. This kind of operation requires 

the use of 1-10 mCi of 32P, significantly more than what is used in most experiments so the 

radioactivity of 32P is a concern [1]. Since 32P-labeling brings additional phosphorous to 

proteins and what is measured is the extra radioactive phosphorous bound to protein, the 

measurements may not reflect the natural status of phosphorylation. Furthermore, 32P-

labeling is not suitable for most applications in plant biology. The second approach is 

immunodetection with antibodies against phoshorylated amino acids. As we know, the 

immunoreaction is amino acid specific which means for phosphorous on certain amino acid, 

a specific antibody has to be used. In different proteins, the reactivity may vary greatly. The 

third approach is to hydrolyze phosphate groups of phosphoprotein and then let the free 

phosphate group react with Ca2+ or some other reagents for analysis. The reactivity again 

depends greatly on the surroundings. Fourth, electrospray ionization mass spectrometry (ESI-

MS) and matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) can be 

used to locate sites of phosphorylation but they are not suitable for quantification either 

because phosphorous in proteins can not be equally or quantitatively ionized in the two soft 

ionization sources. 

With current methods, the only way to reliably quantify phosphorous of a protein, is 

to find the same protein or at least a very similar protein as the standard under the condition 

that the amount of phosphorous in the protein standard is known. Apparently, this is difficult 



www.manaraa.com

43 

because in real research, the information regarding proteins may be unclear and it may be 

very difficult to find its phosphorylation standard. Recently saw a paper, which utilized ICP-

MS for detecting phosphorous in peptides (MW< 4 kDa) but no quantification was 

mentioned in that work [2]. 

In our work, ICP-MS was employed to quantify phosphorous in proteins by detecting 

31 P which is the only natural isotope. Though for ICP, phosphorous is a hard element, only 

10 % of which can be ionized around 7000 Kand ne = 1.5 x 1015 cm-3 , ICP is still the most 

thorough source to convert phosphorous into atomic ions. Detecting 31 P+ with ICP-MS 

requires removal of spectral interference, such as NOH+. Our magnetic sector instrument can 

provide resolution of 4000 and even higher (10 % valley) so phosphorous can be confidently 

distinguished from interference. We tried an inorganic compound, NaH2PO4 as phosphorous 

standard to quantify phosphorous in proteins. If this could work, there would be less need of 

protein standard with known amount of phosphorylation. 

Since proteins are much bigger molecules than NaH2PO4, the reliability and accuracy 

of quantifying phosphorous in proteins with inorganic compound are largely based on the 

extent of atomization and ionization for proteins in ICP, relative to the corresponding 

processes for inorganic phosphate. This issue was investigated first in our present work. The 

improvement of the detection limit for phosphorous was mainly explored in two ways. First, 

organic modifiers were added to DI water and compared in the terms of blank level, blank 

noise, sensitivity and finally detection limit. As claimed by several researchers, organic 

modifiers can improve the sensitivity of many elements whose ionization energies are 

between 9 and 11 eV, like phosphorous, 10.48 eV [3-6]. Second, we tried a graphite injector, 

which was inserted half the way into the plasma. As reported by Clemons et. al., the graphite 
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injector improved absolute sensitivities of hard-to-ionize elements, such as As, Zn and so on 

and suppressed MO+ ions [7]. Phosvitin and B-casein were taken for evaluating the accuracy 

and reliability of our method because the phosphorous content for these two proteins, is 

thought to be well understood. The ultimate goal of our research is to quantify phosphorous 

in proteins or in pharmaceutical compounds by ICP-MS using inorganic phosphorous 

standard. 

EXPERIMENTAL 

Instrumentation 

The Finnigan Element ICP-MS was the main instrument. The nebulizers used were 

PF A 100 from Elemental Scientific Inc. and concentric glass nebulizer inserted with silica 

capillary (246 µm ID, 361 µm OD). The graphite injector consisted of three parts: quartz 

tube, alumina tube and pyrolytic graphite tube (2 mm i.d. x 5 mm o.d. x 35 mm long). The 

alumina tube was the connector, one end tightly inserted with quartz tube and the other end 

with graphite tube. Before use, the graphite tubes were leached in 5% HCl for 8 hrs. The 

peristaltic pump was Minipulse, Gilson and the syringe pump was 74900 series, from Cole 

Parmer Instrument Company. The injection valve, 9725 i from Reodyne was originally 

supplied with 20 µl PEEK loop. The PEEK tubing was replaced with either 10 µl Teflon loop 

or 10 µl fused silica capillary loop. 

Reagents and solutions 

High purity HCl was from J. T. Baker Company. Phosphorous solution ( 21.8 ppb) 

was prepared from solid NaH2PO4, ACS, Fisher Scientific and used as the inorganic 

standard. B-casein (Sigma-Aldrich) was lyophilized powder and then it was dissolved in DI 
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water to become stock solution at 400 ppm in the term of protein. Phosvitin was bought from 

Pierce Company as 1 mg powder and then it was dissolved in 2 ml DI water to become the 

other protein stock solution. 

Methods 

In all experiments, medium resolution (m/~m = 4000) was chosen and mass window 

was set to 150%, peaks to 20, search window to 50% and integration to 80%. 

Two data acquisition methods were designed. First one is the spectrum method. In 

this method, either PF A or glass nebulizer was pumped by peristaltic pump at the rate of 100 

µL/min and samples were taken through the pump tubing. Each acquisition consisted of 100 

runs and 1 pass, which meant there were 100 spectra totally for each acquisition. In this case, 

the counts of all peaks at each nominal m/z in each spectrum were added up and then the 

sums of the 100 spectra were averaged. The averaged sum at each nominal m/z should be 

proportional to concentration. 

The second method is flow injection. In this method, either PF A or glass nebulizer 

was pumped by a syringe pump at the rate of 100 µL/min and samples were injected through 

the 10 µl loop of the injection valve. Each acquisition consisted of 300 runs and 1 pass so 

there were 300 spectra for each acquisition. In this case, the counts of all peaks at each 

nominal m/z in each spectrum were also summed but we didn't average the sums. Instead, 

the sum of each spectrum was plotted verse time to generate a chromatogram. 

In our experiments, combinations of nebulizers ( PF A or glass), methods ( spectrum 

or flow injection) and torches (normal or graphite injector) were made according to need. 

The details are listed in Table 1. 
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RESULTS AND DISCUSSION 

Aerosol gas flow rate plots 

In this measurement, the signals of 31P+, 31 P16O+, 31 P16O/, 31 P 16O/, 31 p 16Q/ were 

measured at different aerosol flow rates for the inorganic standard and B-casein as well. Both 

normal torch and graphite injector were tried. The maximum aerosol flow rate was 1.2 

L/min, limited by the geometry of the PFA 100. 

As shown in Fig IA and Fig 1B, the optimum aerosol flow rates for detecting 31 P+of 

inorganic phosphate and of B-casein were the same. In both Figures, at the optimum flow 

rate, not only 31 P+ signal reached its maximum but also the ratios of phosphorous to its oxides 

were maximized. These observations show that the protein was atomized and ionized at same 

position in ICP as inorganic phosphate was. 

As shown in Fig IC and Fig 1D, with the graphite injector, protein and inorganic 

compound still share the same best aerosol flow rate. It was noticeable, however, this flow 

rate was shifted to a smaller value compared with that of normal torch. With the graphite 

injector, the signals of phosphorous oxides from the aerosol were appreciably depressed. All 

those observations were consistent with previous research on graphite injector [7]. 

Quantification of phosphorous in phosvitin 

Four phosvitin solutions were 32 ppb, 160 ppb, 800 ppb and 4 ppm in the term of 

phosvitin. The reported weight percentage of phosphorous of phosvtin ranged from 9.6% to 

10.4% [8, 9]. 10% was taken for our calculations. 

As shown in Table 2 and Fig 2A through Fig 2C, the measured phosphorous of 

phosvitin was close to calculated values. If phosvitin molecules were not introduced, 

dissociated satisfactorily in ICP or the phosphorous of phosvitin was not ionized to a similar 
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extent as inorganic phosphorous, then phosvitin wouldn't give close 31 P+ result relative to 

inorganic phosphorous standard. Thus, 31 P+ is produced with similar efficiency from 

phosvitin as from inorganic phosphate. 

Quantification of phosphorous in 8-casein 

Phosphorous in 8-casein was determined with inorganic phosphorous standard by 

three different approaches. The molecular weight of B-casein ranges from 23, 944 to 24,092 

Da and each B-casein contains 4 to 5 phosphate residues [10-12]. In our calculations, the MW 

of B-casein was rounded to 24 kDa and each protein molecule was supposed to contain 4.5 

phosphate residues. So the weight percentage of phosphorous in B-casein was 31 Dax 4.5 

/24 kDa = 0.58 %. 

As shown in the first three columns of Table 3, spectrum method didn't give good 

results where the measured values were off from calculated values and the ratios increased 

with protein concentration. This indicated that B-casein stuck to the tubing of peristaltic 

pump. The results in the next three columns from the flow injection method plus glass 

nebulizer had the same problem, which meant 8-casein could also be retained by the silica 

capillary tubing. The ratios in the last three columns didn't change very much, which showed 

that the sticking effect was less severe with Teflon material. Based on the results of the last 

three columns, Line B of Fig 2A was plotted, in which the basic trend was a linear line but 

the measured values was just about half of those expected. Two reasons, in our opinion, were 

probably responsible for the discrepancy. First, B-casein could still stick to the Teflon uptake 

line even though the linearity was maintained. Second, our 13-casein sample might not have as 

much phosphorous as thought. 
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Fig 3A and Fig 3B are two examples of flow injection, one from inorganic standard 

and the other one from f3-casein. To make accurate calculations, the baseline needs to be 

subtracted from peaks so that net peak areas can be obtained, and it is not the peak height but 

the net peak area that is really proportional to concentration. The concentration of 

phosphorous in Fig 3B was determined by measuring the ratio of averaged net peak area of 

Fig 3B over averaged net peak area of Fig 3A since the concentration of phosphorous in the 

inorganic standard was known to be 21.8 ppb. 

Rinse-out curve 

150 ppb inorganic phosphorous was compared with phosvitin and B-casein whose 

calculated concentrations in the term of phosphorous were both 150 ppb. All three solutions 

were dissolved in DI water. It must be pointed out, in this experiment, data were acquired by 

the flow-injection method but samples were taken by natural uptake of Teflon tubing without 

any pump or going through any injection valve. 

As shown in Fig 4A and Fig 4B, the rising edge and falling edge of the peak for f3-

casein were as sharp as those for phosvitin and inorganic phosphate. Thus, none of these 

species stuck to the Teflon tubing longer than the others. During the 20 seconds or so when 

the samples were introduced, the signals were not very stable. This was because after being 

used for a long time, the tiny capillary tubing of Teflon nebulizer could be clogged partly by 

particles in samples, so that the uptake rate changed. Cleaning the Teflon with 5% HN03 or 

2% HF and using a pump could improve the signal stability appreciably. 

If the stickiness was not the reason why just half amount of phosphorous of 8-casein 

as predicted was measured, then it was much more likely that the B-casein in our experiments 
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didn't have as much as phosphorous as thought. We suspects 8-casein lost its phosphorous 

through hydrolysis during purification. 

Detection limit comparison 

21.8 ppb inorganic phosphorous standard was used for evaluation. With normal torch 

plus PF A nebulizer, solvent effects on detection limit were compared. As listed in Table 4, 

the absolute sensitivity in 3 % MeOH was about 40 % higher than that in DI water. 

Triethanolamine at 6 % generated almost 1.8 times sensitivity of DI. However, DI water had 

the lowest blank level and noise standard deviation and ultimately its detection limit for 

phosphorous was as good as that of 3% MeOH. The detection limit with 6 % 

triethanolamine was worse due to its high, noisy blank level. 

In the case of normal torch plus glass nebulizer, detection limit was not good, due to 

the increased blank and decreased sensitivity. 

The spectrum method with DI water as solvent produced detection limit of 0.08 ppb. 

If this method took 1 min or in another word, 100 µL sample, then the absolute detection 

limit was 0.08 ppb x 100 µl = 0.08 ng/ml x 0.1 ml = 0.008 ng = 8 pg phosphorous. 

Flow injection method required only 10 µL sample but the detection limit couldn't 

be as low as 0.08 ppb since we were unable to improve the standard deviation by averaging 

spectra. In this case, the detection limit was around 2 ppb or 2 ppb x 10 µl = 2 ng/ml x 0.01 

ml = 0.02 ng = 20 pg phosphorous. 

We believe, in a clean laboratory environment, the blank level and blank standard 

deviation would be decreased further so that the detection limit for phosphorous can be 

improved further. 
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CONCLUSION 

The overall conclusion is phosphorous in proteins can be quantified in ICP-MS with 

inorganic phosphorous standard and meanwhile the accuracy, reliability and detection limit 

are very good. The conclusion may be specified as follows: 

1. Protein requires the same optimum aerosol flow rate as inorganic phosphate so the 

dissociation and atomization of protein in ICP is not a problem. 

2. There is very close match between measured values and calculated values for phosvitin. It 

means proteins can be introduced, atomized and ionized to the same degree as inorganic 

phosphate is. So inorganic phosphate can be used as standard to quantify phosphorous in 

proteins, at least phosvitin. 

3. The measured phosphorous concentrations in B-casein were about half of those expected. 

The possibility of protein's sticking to Teflon can be ruled out since the rising edge and 

falling edge of peaks for B-casein are just same as those for phosvitin and inorganic 

phosphate. So we doubt if the B-casein in our experiments had as much phosphorous as 

thought. Hydrolysis may be the reason of less phosphorous being present. 

4. For phosphorous, the detection limit can be as good as 8 pg with spectrum method or 20 

pg with flow injection method. The organic modifier improves sensitivity by 40 % to 80 % 

but can not improve detection limit due to increased blank. 
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Experiment Method 

1. Aerosol Flow Spectrum 

Rate 

2. Phosphorous in Spectrum 

Phosvitin 

3. Phosphorous in 1) Spectrum 

13-casein 2) Flow Injection 

3) Flow Injection 

4. Detection Limit Spectrum 

5. Rinse-out Curve Flow Injection 

Table 1 Experiment setup 

Nebulizer Torch 

PFA 1) Normal Torch 

2) Graphite Injector 

PFA Normal Torch 

1) PFA Normal Torch 

2) Glass 

3) PFA 

1) PFA 1) Normal Torch 

2) Glass 2) Normal Torch 

PFA Normal Torch 

Measured Isotopes 
Jlp JipI!Jo Jlpl()o , , 2, 

31pl603, 31pl604 

Jlp 

Jlp 

Jlp 

3lp 

v-, 
N 
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Phosvitin 

Concentration (ppb) 

32 

160 

800 

4000 

Spectrum + PF A 

Phosphorous 

Calculated Measured 

(ppb) (ppb) 

9.28 1.74 

46.4 10.8 

232 96.3 

Table 2 Phosvitin (MW: 40 kDa, 10 wt.%) 

Phosphorous of Phosvitin 

Calculated ( ppb ) Measured (ppb ) Ratio (Measured/Calculated) 

3.2 3.35 1.0 

16 14.3 0.89 

80 71 0.89 

400 341 0.85 

Table 3 ~-Casein (MW: 24 kDa, 0.58 wt. %) 

Flow Injection + Glass Flow Injection + PF A 

Phosphorous Phosphorous 

Ratio Calculated Measured Ratio Calculated Measured Ratio 

(ppb) (ppb) (ppb) (ppb) 

0.19 46.4 9.84 0.21 23.2 13.2 0.57 

0.23 116 33 0.28 58 24.3 0.41 

0.42 290 153 0.53 232 132 0.56 

696 955 1.37 464 226 0.48 

V, 
v.J 



www.manaraa.com

Table 4 Comparison of detection limits 

Normal Torch+ PFA 

Solvent DI 3%MeOH 6% Triethanolamine 

Blank Level of P 1.54 x 103 2.19 x 103 4.92 x 103 

Blank Noise STD of P 1.31 X 102 1.82 X 102 2.66 X 102 

Signal of21.8 ppb P 1.01 X 105 1.42 X 105 1.78 X 105 

Net signal of21.8 ppb P 9.97 X 104 l.40x 10:i 1.74 X 10:i 

Net Signal of 1 ppb P 4.57 x l0j 6.41 x lOj 7.96 x lOj 

Detection Limit 0.085 ppb 0.085 ppb 0.10 ppb 

Normal Torch 

+ glass 

DI 

5.83 x IOJ 

8.33 X 102 

6.70 X 102 

6.12 X 102 

2.81 x IOJ 

0.89 ppb 

v-, 
+'>-
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Fig 2A Quantification of phosphorous in proteins 
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4. GENERAL CONCLUSION 

ICP-MS is a wonderful technique for trace and ultra-trace elemental analysis. 

Thanks to the modem electronics and computerized automation, ICP-MS instrument is 

getting more efficient, stable, sensitive and accurate. The combination oflCP-MS with other 

techniques, such as liquid chromatography makes ICP-MS more powerful and charming. 

SEC column supplies an amicable condition for bio-molecules. Separations 

happening in SEC column with proper buffers are not supposed to hurt the activeness or 

attributes of bio-molecules. In this work, uranium and holmium at low ppb level was spiked 

to DNA mixture at ppm level. Since both the reaction and separation occurred in buffer, this 

work imitated what could be happening between DNA and the two metals under natural 

conditions. The SEC column separated fragments of DNA mixtures and supplied information 

about the sizes of fragments; the ICP-MS machine confidently measured the very low 

amount of metals possibly bound to DNA fragments; the serial measurements helped us 

make the dynamic investigations on the uranium/holmium-DNA interactions. The 

understanding of how uranium and post-uranium elements interact with DNA has important 

meaning to human health, environmental protection and industry/military usage. That is why 

we did the research and what we wanted to get from it. Hopefully, we can even use SEC-

ICP-MS for other dynamic explorations regarding the metal-biomolecules interactions. 

Quantifying phosphorous in proteins is tremendously important to the research in 

phosphoprotein. ICP-MS turns out to be a reliable and accurate technique for this task. 

According to the aerosol flow rate experiments, protein can be dissociated, atomized and 

ionized similarly as inorganic phosphate was. This means ICP as ionization source is strong 

enough to equally and quantitatively convert protein into the detectable forms oflCP-MS. 
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The test with phosvitin gave a good proof to our methodology. The test with B-casein was off 

by 50%. We suspect some phosphorous of B-casein was lost during purification so that our 

sample B-casein never had as much phosphorous as expected. The detection limit of 

phosphorous with Element ICP-MS can be as low as 8 pg if the spectrum method is in use 

and it can be as low as 20 pg if the flow injection method is in use. 
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